Search results

Search for "common scaffold" in Full Text gives 5 result(s) in Beilstein Journal of Organic Chemistry.

Combining the best of both worlds: radical-based divergent total synthesis

  • Kyriaki Gennaiou,
  • Antonios Kelesidis,
  • Maria Kourgiantaki and
  • Alexandros L. Zografos

Beilstein J. Org. Chem. 2023, 19, 1–26, doi:10.3762/bjoc.19.1

Graphical Abstract
  • review highlights recent total syntheses that incorporate the best of both worlds. Keywords: biomimetic synthesis; cascades; common scaffold; hydrogen atom transfer; photoredox catalysis; Introduction Societal needs push sciences into new directions, as the urge for new pharmaceutical leads grows, in
  • their synthesis (Scheme 2). The synthetic variant of 3 was designed as the common scaffold 16, bearing the appropriate substitution for sequential revelation of carboxylic acid moieties. The highly congested decalin core of common scaffold 16 was obtained by a modified electrochemical polycyclization of
  • of (−)-sclareol (43) [36] as the precursor to a photolabile Barton ester 59. When the latter was irradiated at 250 W in the presence of benzoquinone, a decarboxylated coupling occurred, yielding semiquinone 60, few steps away from the common scaffold 61. Following this protocol, researchers managed
PDF
Album
Review
Published 02 Jan 2023

Regioselective addition of Grignard reagents to N-acylpyrazinium salts: synthesis of substituted 1,2-dihydropyrazines and Δ5-2-oxopiperazines

  • Valentine R. St. Hilaire,
  • William E. Hopkins,
  • Yenteeo S. Miller,
  • Srinivasa R. Dandepally and
  • Alfred L. Williams

Beilstein J. Org. Chem. 2019, 15, 72–78, doi:10.3762/bjoc.15.8

Graphical Abstract
  • –4). This simple approach towards Δ5-2-oxopiperazines provides access into compounds that can be reduced into mono- and disubstituted 2-oxopiperazines [33][34]. This structure is a common scaffold found in natural products and biologically active small molecules [23]. Conclusion In conclusion, we
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2019

One-pot synthesis of enantiomerically pure N-protected allylic amines from N-protected α-amino esters

  • Gastón Silveira-Dorta,
  • Sergio J. Álvarez-Méndez,
  • Víctor S. Martín and
  • José M. Padrón

Beilstein J. Org. Chem. 2016, 12, 957–962, doi:10.3762/bjoc.12.94

Graphical Abstract
  • and threonine derivatives. Keywords: amino acids; olefination; protecting group free; synthetic methods; Wittig reactions; Introduction Allylic amines have received significant attention because they represent a common scaffold in diverse biologically relevant compounds and natural products [1]. In
PDF
Album
Supp Info
Full Research Paper
Published 12 May 2016

Antibiotics from predatory bacteria

  • Juliane Korp,
  • María S. Vela Gurovic and
  • Markus Nett

Beilstein J. Org. Chem. 2016, 12, 594–607, doi:10.3762/bjoc.12.58

Graphical Abstract
  • Mxf50 [95][96]. Later, the structurally related corallopyronins were found in different strains of Corallococcus coralloides [97][98][99]. Myxopyronins and corallopyronins share a common scaffold composed of a central pyrone ring carrying two flexible side chains (Figure 3). Structural variability
PDF
Album
Review
Published 30 Mar 2016

Synthesis of a library of tricyclic azepinoisoindolinones

  • Bettina Miller,
  • Shuli Mao,
  • Kara M. George Rosenker,
  • Joshua G. Pierce and
  • Peter Wipf

Beilstein J. Org. Chem. 2012, 8, 1091–1097, doi:10.3762/bjoc.8.120

Graphical Abstract
  • ; epoxide aminolysis; hydrozirconation; isoindolinones; metathesis; N-acyliminium ion; Introduction Isoindolinones represent a common scaffold seen in naturally occurring compounds such as magallanesine [1], lennoxamine [2] and clitocybin A [3], or drug candidates such as pagoclone [4] (Figure 1). These
PDF
Album
Supp Info
Full Research Paper
Published 13 Jul 2012
Other Beilstein-Institut Open Science Activities